Popis: |
Cytochromes P450 monooxygenases (CYP450s) constitute the largest enzymic protein family that is widely present in plants, animals, and microorganisms, participate in numerous metabolic pathways, and play diverse roles in development, metabolism, and defense. Rapeseed (Brassica napus) is an important oil crop worldwide and have many versions of reference genome. However, there is no systemically comparative genome-wide analysis of CYP450 family genes in rapeseed and its parental species B. rapa and B. oleracea. In this study, we identified 765, 293 and 437 CYP450 genes in B. napus, B. rapa and B. oleracea, respectively, which were unevenly located in A01-A10 and/or C01-C09 chromosomes in corresponding species. Phylogenetic relationship analysis indicated that 1745 CYP450 proteins from three Brassica species and Arabidopsis were divided into 4 groups. Whole genome duplication (WGD) or segmental duplication resulted in gene expansion of CYP450 family in three Brassica species. There were 33–83 SSR loci in CYP450 genes of three Brassica species, and numerous transcription factor binding sites were identified in their promoters. A total of 459–777 miRNAs were predicted to target 174–426 CYP450 genes in three Brassica species. Based on transcriptome data, BnCYP450s, BrCYP450s and BoCYP450s were differentially expressed in various tissues. There existed numerous BnCYP450 DEGs in response to pathogens and abiotic stresses. Besides, many BnCYP450 DEGs were involved in the regulation of important traits, such as seed germination, seed ALA content, and yellow-seed. The qRT-PCR experiment confirmed the transcriptome analysis results by validating two representative Sclerotinia-responsive BnCYP450 DEGs as an example. Three BnCYP450s genes (CYP707A1, CYP81F1, CYP81H1) might be regulated by seed-specific transcription factors BnTT1 and BnbZIP67 to participate in the development and metabolism of seed coat and embryo by undertaking related metabolic reactions. |