Solutions for Schrödinger equations with variable separated type nonlinear terms

Autor: Xia Su, Chunhua Deng
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: AIMS Mathematics, Vol 8, Iss 12, Pp 30487-30500 (2023)
Druh dokumentu: article
ISSN: 2473-6988
DOI: 10.3934/math.20231557?viewType=HTML
Popis: In this paper, we consider the following semilinear Schrödinger equation: $ \begin{eqnarray*} \left\{ \begin{array}{ll} -\Delta u+V(x)u = a(x)g(u)&{\mbox{for}}\; x\in \mathbb{R}^{N} ,\\ u(x)\rightarrow0&{\mbox{as}}\; |x|\rightarrow \infty , \end{array} \right. \end{eqnarray*} $ where $ a(x) > 0 $ for all $ \mathbb{R}^{N} $. Under some different superlinear conditions on $ g(u) $, we obtain the existence of solutions for the above problem. In order to regain the compactness of the Sobolev embedding, a competing condition between $ a(x) $ and $ V(x) $ is introduced.
Databáze: Directory of Open Access Journals