Autor: |
Nikolaos S. Papageorgiou, Calogero Vetro, Francesca Vetro |
Jazyk: |
angličtina |
Rok vydání: |
2020 |
Předmět: |
|
Zdroj: |
Electronic Journal of Differential Equations, Vol 2020, Iss 12,, Pp 1-20 (2020) |
Druh dokumentu: |
article |
ISSN: |
1072-6691 |
Popis: |
We consider a parametric Neumann problem driven by a nonlinear nonhomogeneous differential operator plus an indefinite potential term. The reaction term is superlinear but does not satisfy the Ambrosetti-Rabinowitz condition. First we prove a bifurcation-type result describing in a precise way the dependence of the set of positive solutions on the parameter $\lambda>0$. We also show the existence of a smallest positive solution. Similar results hold for the negative solutions and in this case we have a biggest negative solution. Finally using the extremal constant sign solutions we produce a smooth nodal solution. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|