Popis: |
In this study, we estimate life history parameters and abundance for a protected jaguar population using camera-trap data from a 14-year monitoring program (2002-2015) in Belize, Central America. We investigated the dynamics of this jaguar population using 3,075 detection events of 105 individual adult jaguars. Using robust design open population models, we estimated apparent survival and temporary emigration and investigated individual heterogeneity in detection rates across years. Survival probability was high and constant among the years for both sexes (φ = 0.78), and the maximum (conservative) age recorded was 14 years. Temporary emigration rate for the population was random, but constant through time at 0.20 per year. Detection probability varied between sexes, and among years and individuals. Heterogeneity in detection took the form of a dichotomy for males: those with consistently high detection rates, and those with low, sporadic detection rates, suggesting a relatively stable population of 'residents' consistently present and a fluctuating layer of 'transients'. Female detection was always low and sporadic. On average, twice as many males than females were detected per survey, and individual detection rates were significantly higher for males. We attribute sex-based differences in detection to biases resulting from social variation in trail-walking behaviour. The number of individual females detected increased when the survey period was extended from 3 months to a full year. Due to the low detection rates of females and the variable 'transient' male subpopulation, annual abundance estimates based on 3-month surveys had low precision. To estimate survival and monitor population changes in elusive, wide-ranging, low-density species, we recommend repeated surveys over multiple years; and suggest that continuous monitoring over multiple years yields even further insight into population dynamics of elusive predator populations. |