Autor: |
Baig Abdul Qudair, Naeem Muhammad, Gao Wei |
Jazyk: |
angličtina |
Rok vydání: |
2018 |
Předmět: |
|
Zdroj: |
Applied Mathematics and Nonlinear Sciences, Vol 3, Iss 1, Pp 33-40 (2018) |
Druh dokumentu: |
article |
ISSN: |
2444-8656 |
DOI: |
10.21042/AMNS.2018.1.00004 |
Popis: |
Let G be a connected graph with vertex set V(G) and edge set E(G). Recently, the Revan vertex degree concept is defined in Chemical Graph Theory. The first and second Revan indices of G are defined as R1(G) = ∑uv∈E$\begin{array}{} \displaystyle \sum\limits_{uv\in E} \end{array}$[rG(u) + rG(v)] and R2(G) = ∑uv∈E$\begin{array}{} \displaystyle \sum\limits_{uv\in E} \end{array}$[rG(u)rG(v)], where uv means that the vertex u and edge v are adjacent in G. The first and second hyper-Revan indices of G are defined as HR1(G) = ∑uv∈E$\begin{array}{} \displaystyle \sum\limits_{uv\in E} \end{array}$[rG(u) + rG(v)]2 and HR2(G) = ∑uv∈E$\begin{array}{} \displaystyle \sum\limits_{uv\in E} \end{array}$[rG(u)rG(v)]2. In this paper, we compute the first and second kind of Revan and hyper-Revan indices for the octahedral and icosahedral networks. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|