Vascular endothelial growth factor promotes atrial arrhythmias by inducing acute intercalated disk remodeling

Autor: Louisa Mezache, Heather L. Struckman, Amara Greer-Short, Stephen Baine, Sándor Györke, Przemysław B. Radwański, Thomas J. Hund, Rengasayee Veeraraghavan
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Scientific Reports, Vol 10, Iss 1, Pp 1-14 (2020)
Druh dokumentu: article
ISSN: 2045-2322
DOI: 10.1038/s41598-020-77562-5
Popis: Abstract Atrial fibrillation (AF) is the most common arrhythmia and is associated with inflammation. AF patients have elevated levels of inflammatory cytokines known to promote vascular leak, such as vascular endothelial growth factor A (VEGF). However, the contribution of vascular leak and consequent cardiac edema to the genesis of atrial arrhythmias remains unknown. Previous work suggests that interstitial edema in the heart can acutely promote ventricular arrhythmias by disrupting ventricular myocyte intercalated disk (ID) nanodomains rich in cardiac sodium channels (NaV1.5) and slowing cardiac conduction. Interestingly, similar disruption of ID nanodomains has been identified in atrial samples from AF patients. Therefore, we tested the hypothesis that VEGF-induced vascular leak can acutely increase atrial arrhythmia susceptibility by disrupting ID nanodomains and slowing atrial conduction. Treatment of murine hearts with VEGF (30–60 min, at clinically relevant levels) prolonged the electrocardiographic P wave and increased susceptibility to burst pacing-induced atrial arrhythmias. Optical voltage mapping revealed slower atrial conduction following VEGF treatment (10 ± 0.4 cm/s vs. 21 ± 1 cm/s at baseline, p
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje