A deep learning framework for identifying and segmenting three vessels in fetal heart ultrasound images

Autor: Laifa Yan, Shan Ling, Rongsong Mao, Haoran Xi, Fei Wang
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: BioMedical Engineering OnLine, Vol 23, Iss 1, Pp 1-14 (2024)
Druh dokumentu: article
ISSN: 1475-925X
DOI: 10.1186/s12938-024-01230-2
Popis: Abstract Background Congenital heart disease (CHD) is one of the most common birth defects in the world. It is the leading cause of infant mortality, necessitating an early diagnosis for timely intervention. Prenatal screening using ultrasound is the primary method for CHD detection. However, its effectiveness is heavily reliant on the expertise of physicians, leading to subjective interpretations and potential underdiagnosis. Therefore, a method for automatic analysis of fetal cardiac ultrasound images is highly desired to assist an objective and effective CHD diagnosis. Method In this study, we propose a deep learning-based framework for the identification and segmentation of the three vessels—the pulmonary artery, aorta, and superior vena cava—in the ultrasound three vessel view (3VV) of the fetal heart. In the first stage of the framework, the object detection model Yolov5 is employed to identify the three vessels and localize the Region of Interest (ROI) within the original full-sized ultrasound images. Subsequently, a modified Deeplabv3 equipped with our novel AMFF (Attentional Multi-scale Feature Fusion) module is applied in the second stage to segment the three vessels within the cropped ROI images. Results We evaluated our method with a dataset consisting of 511 fetal heart 3VV images. Compared to existing models, our framework exhibits superior performance in the segmentation of all the three vessels, demonstrating the Dice coefficients of 85.55%, 89.12%, and 77.54% for PA, Ao and SVC respectively. Conclusions Our experimental results show that our proposed framework can automatically and accurately detect and segment the three vessels in fetal heart 3VV images. This method has the potential to assist sonographers in enhancing the precision of vessel assessment during fetal heart examinations.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje