3D-SiamMask: Vision-Based Multi-Rotor Aerial-Vehicle Tracking for a Moving Object

Autor: Mohamad Al Mdfaa, Geesara Kulathunga, Alexandr Klimchik
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Remote Sensing, Vol 14, Iss 22, p 5756 (2022)
Druh dokumentu: article
ISSN: 2072-4292
DOI: 10.3390/rs14225756
Popis: This paper aims to develop a multi-rotor-based visual tracker for a specified moving object. Visual object-tracking algorithms for multi-rotors are challenging due to multiple issues such as occlusion, quick camera motion, and out-of-view scenarios. Hence, algorithmic changes are required for dealing with images or video sequences obtained by multi-rotors. Therefore, we propose two approaches: a generic object tracker and a class-specific tracker. Both tracking settings require the object bounding box to be selected in the first frame. As part of the later steps, the object tracker uses the updated template set and the calibrated RGBD sensor data as inputs to track the target object using a Siamese network and a machine-learning model for depth estimation. The class-specific tracker is quite similar to the generic object tracker but has an additional auxiliary object classifier. The experimental study and validation were carried out in a robot simulation environment. The simulation environment was designed to serve multiple case scenarios using Gazebo. According to the experiment results, the class-specific object tracker performed better than the generic object tracker in terms of stability and accuracy. Experiments show that the proposed generic tracker achieves promising results on three challenging datasets. Our tracker runs at approximately 36 fps on GPU.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje