Autor: |
Jeong-Hoon Ko, Jun-Chan Choi, Dong-Jin Lee, Jae-Won Lee, Hak-Rin Kim |
Jazyk: |
angličtina |
Rok vydání: |
2021 |
Předmět: |
|
Zdroj: |
Crystals, Vol 11, Iss 3, p 268 (2021) |
Druh dokumentu: |
article |
ISSN: |
2073-4352 |
DOI: |
10.3390/cryst11030268 |
Popis: |
In liquid crystal (LC) displays, deriving an optimum resistance level of an LC alignment polyimide (PI) layer is important because of the trade-off between the voltage holding and surface-discharging properties. In particular, to apply a power-saving low-frequency operation scheme to fringe-field switching (FFS) LC modes with negative dielectric LC (n-LC), delicate material engineering is required to avoid surface-charge-dependent image flickering and sticking problems, which severely degrade with lowering operation frequency. Therefore, this paper proposes a photocontrolled variable-resistivity PI layer in order to systematically investigate the voltage holding and discharging properties of the FFS n-LC modes, according to the PI resistivity (ρ) levels. By doping fullerene into the high-ρ PI as the photoexcited charge-generating nanoparticles, the ρ levels of the PI were continuously controllable with a wide tunable range (0.95 × 1015 Ω∙cm to 5.36 × 1013 Ω∙cm) through Ar laser irradiation under the same LC and LC alignment conditions. The frequency-dependent voltage holding and discharge behaviors were analyzed with photocontrolled ρ variation. Thus, the proposed experimental scheme is a feasible approach in PI engineering for a power-saving low-frequency FFS n-LC mode without the image flickering and image sticking issues. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|