Early evolution of conserved regulatory sequences associated with development in vertebrates.
Autor: | Gayle K McEwen, Debbie K Goode, Hugo J Parker, Adam Woolfe, Heather Callaway, Greg Elgar |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2009 |
Předmět: | |
Zdroj: | PLoS Genetics, Vol 5, Iss 12, p e1000762 (2009) |
Druh dokumentu: | article |
ISSN: | 1553-7390 1553-7404 |
DOI: | 10.1371/journal.pgen.1000762 |
Popis: | Comparisons between diverse vertebrate genomes have uncovered thousands of highly conserved non-coding sequences, an increasing number of which have been shown to function as enhancers during early development. Despite their extreme conservation over 500 million years from humans to cartilaginous fish, these elements appear to be largely absent in invertebrates, and, to date, there has been little understanding of their mode of action or the evolutionary processes that have modelled them. We have now exploited emerging genomic sequence data for the sea lamprey, Petromyzon marinus, to explore the depth of conservation of this type of element in the earliest diverging extant vertebrate lineage, the jawless fish (agnathans). We searched for conserved non-coding elements (CNEs) at 13 human gene loci and identified lamprey elements associated with all but two of these gene regions. Although markedly shorter and less well conserved than within jawed vertebrates, identified lamprey CNEs are able to drive specific patterns of expression in zebrafish embryos, which are almost identical to those driven by the equivalent human elements. These CNEs are therefore a unique and defining characteristic of all vertebrates. Furthermore, alignment of lamprey and other vertebrate CNEs should permit the identification of persistent sequence signatures that are responsible for common patterns of expression and contribute to the elucidation of the regulatory language in CNEs. Identifying the core regulatory code for development, common to all vertebrates, provides a foundation upon which regulatory networks can be constructed and might also illuminate how large conserved regulatory sequence blocks evolve and become fixed in genomic DNA. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |