Autor: |
Kuo-Kai Shyu, Szu-Chi Huang, Lung-Hao Lee, Po-Lei Lee |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
IEEE Access, Vol 11, Pp 49172-49182 (2023) |
Druh dokumentu: |
article |
ISSN: |
2169-3536 |
DOI: |
10.1109/ACCESS.2023.3277634 |
Popis: |
Many deep-learning-based seizure detection algorithms have achieved good classification, which usually outperformed traditional machine-learning-based algorithms. However, the hand-engineered features increase the computational complexity and potentially have an ineffectiveness problem for the category. Therefore, this paper proposes a novel end-to-end deep-learning model comprising an inception module and a residual module to analyze the multi-scales of original EEG signals and realize seizure detection without feature extraction. Experiments were conducted and evaluated on the Bonn dataset and the CHB-MIT dataset. In the subject-dependent experiments, our model achieved an average F1-score of 69.34% on the CHB-MIT dataset. In subject-independent experiments, our method achieved an average accuracy of 99.04% on the Bonn dataset and an average F1-score of 37.31% on the CHB-MIT dataset. A series of analyses confirmed that our proposed model has better classification performance and lower computational complexity than existing end-to-end seizure detection models. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|