Autor: |
John Abraham, Lijing Cheng, John Gorman |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Energies, Vol 17, Iss 5, p 1079 (2024) |
Druh dokumentu: |
article |
ISSN: |
1996-1073 |
DOI: |
10.3390/en17051079 |
Popis: |
Ruptures of pipelines can result in dangerous fluids spreading toward populated areas. It is critical for designers to have tools that can accurately predict whether populated areas might be within a plume rupture zone. Numerical simulations using computational fluid dynamics (CFD) are compared here with experimental and real-world carbon dioxide ruptures. The experimental data were used to validate the computer model; subsequently, the algorithm was used for a real-world rupture from 2020 that occurred in the USA. From experiments, CFD predictions were superior to diffusion model results based on measurements made downstream of the release (within 1% concentration). Results from the real-world simulation confirm that a nearby town was in a plume pathway. Citizens in the town sought medical attention consistent with the calculated plume concentrations. CFD predictions of the airborne concentration of carbon dioxide in the town approximately 1 mile (1.5 km) downstream of the rupture reveal time-averaged concentrations of ~5%. One person was unconscious for ~45 min at a distance of 0.6 miles from the rupture site; other unconscious persons were in the center of the town (~1 mile from the rupture site) and ~1.2 miles from the rupture. These reports are in excellent agreement with the calculated plume concentrations in the region. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|