Glutamate-Weighted Magnetic Resonance Imaging (GluCEST) Detects Effects of Transcranial Magnetic Stimulation to the Motor Cortex

Autor: Abigail T.J. Cember, Benjamin L. Deck, Apoorva Kelkar, Olu Faseyitan, Jared P. Zimmerman, Brian Erickson, Mark A. Elliott, H. Branch Coslett, Roy H. Hamilton, Ravinder Reddy, John D. Medaglia
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: NeuroImage, Vol 256, Iss , Pp 119191- (2022)
Druh dokumentu: article
ISSN: 1095-9572
DOI: 10.1016/j.neuroimage.2022.119191
Popis: Transcranial magnetic stimulation (TMS) is used in several FDA-approved treatments and, increasingly, to treat neurological disorders in off-label uses. However, the mechanism by which TMS causes physiological change is unclear, as are the origins of response variability in the general population. Ideally, objective in vivo biomarkers could shed light on these unknowns and eventually inform personalized interventions. Continuous theta-burst stimulation (cTBS) is a form of TMS observed to reduce motor evoked potentials (MEPs) for 60 min or longer post-stimulation, although the consistency of this effect and its mechanism continue to be under debate. Here, we use glutamate-weighted chemical exchange saturation transfer (gluCEST) magnetic resonance imaging (MRI) at ultra-high magnetic field (7T) to measure changes in glutamate concentration at the site of cTBS. We find that the gluCEST signal in the ipsilateral hemisphere of the brain generally decreases in response to cTBS, whereas consistent changes were not detected in the contralateral region of interest (ROI) or in subjects receiving sham stimulation.
Databáze: Directory of Open Access Journals