Autor: |
Jianyong Gao, Liyi Ma, Chen Qing, Tingdi Zhao, Zhipeng Wang, Jie Geng, Ying Li |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Sensors, Vol 24, Iss 14, p 4486 (2024) |
Druh dokumentu: |
article |
ISSN: |
1424-8220 |
DOI: |
10.3390/s24144486 |
Popis: |
The health monitoring of CRF (circulation water) pumps is essential for prognostics and management in nuclear power plants. However, the operational status of CRF pumps can vary due to environmental factors and human intervention, and the interrelationships between monitoring parameters are often complex. Consequently, the existing methods face challenges in effectively assessing the health status of CRF pumps. In this study, we propose a health monitoring model for CRF pumps utilizing a meta graph transformer (MGT) observer. Initially, the meta graph transformer, a temporal–spatial graph learning model, is employed to predict trends across the various monitoring parameters of the CRF pump. Subsequently, a fault observer is constructed to generate early warnings of potential faults. The proposed model was validated using real data from CRF pumps in a nuclear power plant. The results demonstrate that the average Mean Absolute Percentage Error (MAPE), Mean Absolute Error (MAE), and Root Mean Square Error (RMSE) of normal predictions were reduced to 1.2385, 0.5614, and 2.6554, respectively. These findings indicate that our model achieves higher prediction accuracy compared to the existing methods and can provide fault warnings at least one week in advance. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|