A Method for Aileron Actuator Fault Diagnosis Based on PCA and PGC-SVM

Autor: Wei-Li Qin, Wen-Jin Zhang, Chen Lu
Jazyk: angličtina
Rok vydání: 2016
Předmět:
Zdroj: Shock and Vibration, Vol 2016 (2016)
Druh dokumentu: article
ISSN: 1070-9622
1875-9203
DOI: 10.1155/2016/4807250
Popis: Aileron actuators are pivotal components for aircraft flight control system. Thus, the fault diagnosis of aileron actuators is vital in the enhancement of the reliability and fault tolerant capability. This paper presents an aileron actuator fault diagnosis approach combining principal component analysis (PCA), grid search (GS), 10-fold cross validation (CV), and one-versus-one support vector machine (SVM). This method is referred to as PGC-SVM and utilizes the direct drive valve input, force motor current, and displacement feedback signal to realize fault detection and location. First, several common faults of aileron actuators, which include force motor coil break, sensor coil break, cylinder leakage, and amplifier gain reduction, are extracted from the fault quadrantal diagram; the corresponding fault mechanisms are analyzed. Second, the data feature extraction is performed with dimension reduction using PCA. Finally, the GS and CV algorithms are employed to train a one-versus-one SVM for fault classification, thus obtaining the optimal model parameters and assuring the generalization of the trained SVM, respectively. To verify the effectiveness of the proposed approach, four types of faults are introduced into the simulation model established by AMESim and Simulink. The results demonstrate its desirable diagnostic performance which outperforms that of the traditional SVM by comparison.
Databáze: Directory of Open Access Journals