Autor: |
Rogério Casagrande, Ricardo Moraes, Carlos Montez, Francisco Vasques, Erico Leão |
Jazyk: |
angličtina |
Rok vydání: |
2020 |
Předmět: |
|
Zdroj: |
Sensors, Vol 20, Iss 19, p 5694 (2020) |
Druh dokumentu: |
article |
ISSN: |
1424-8220 |
DOI: |
10.3390/s20195694 |
Popis: |
Node mobility in multi-hop communication environments is an important feature of Wireless Sensor Network (WSN)-based monitoring systems. It allows nodes to have freedom of movement, without being restricted to a single-hop communication range. In IEEE 802.15.4 WSNs, nodes are only able to transfer data messages after completing a connection with a coordinator through an association mechanism. Within this context, a handover procedure needs to be executed by a mobile node whenever there is a disconnection from a coordinator and the establishment of a connection to another one. Many applications, such as those found in health monitoring systems, strongly need support for node mobility without loss of data during the handover. However, it has been observed that the time required to execute the handover procedure is one of the main reasons why IEEE 802.15.4 cannot fully support mobility. This paper proposes an improvement to this procedure using a set of combined strategies, such as anticipation of both the handover mechanism and the scan phase enhancement. Simulations show that it is possible to reduce latency during the association and re-association processes, making it feasible to develop WSN-based distributed monitoring systems with mobile nodes and stringent time constraints. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|