Oxidized Cell-Free DNA Rapidly Skews the Transcriptional Profile of Brain Cells toward Boosting Neurogenesis and Neuroplasticity

Autor: Anton D. Filev, Svetlana V. Kostyuk, Pavel E. Umriukhin, Vladimir M. Pisarev
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Current Issues in Molecular Biology, Vol 43, Iss 3, Pp 1583-1591 (2021)
Druh dokumentu: article
ISSN: 1467-3045
1467-3037
DOI: 10.3390/cimb43030112
Popis: Cell-free DNA (cfDNA) is liberated and accumulated in neural tissue due to cell damage. The oxidative and nitrosative stress in the brain that accompanies various pathological conditions has been shown to increase the oxidation of cellular and cell-free DNA. Whether the high concentration of non-oxidized and oxidized cfDNA may affect the transcriptome response of brain cells has not been studied. In the current work, we studied whether cfDNA fragments affect several key pathways, including neurogenesis, at the level of gene expression in brain cells. In the study, primary rat cerebellum cell cultures were used to assess the effects of oxidized and non-oxidized cfDNA on the expression of 91 genes in brain cells. We found that only oxidized cfDNA, not non-oxidized cfDNA, significantly altered the transcription in brain cells in 3 h. The pattern of change included all 10 upregulated genes (S100A8, S100A9, S100b, TrkB, Ngf, Pink1, Aqp4, Nmdar, Kcnk2, Mapk1) belonging to genes associated with neurogenesis and neuroplasticity. The expression of inflammatory and apoptosis genes, which oppose neurogenesis, decreased. The results show that the oxidized form of cfDNA positively regulates early gene expression of neurogenesis and neuroplasticity. At the same time, the question of whether chronic elevation of cfDNA concentration alters brain cells remains unexplored.
Databáze: Directory of Open Access Journals