Evaluation of functional tests performance using a camera-based and machine learning approach.

Autor: Jindřich Adolf, Yoram Segal, Matyáš Turna, Tereza Nováková, Jaromír Doležal, Patrik Kutílek, Jan Hejda, Ofer Hadar, Lenka Lhotská
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: PLoS ONE, Vol 18, Iss 11, p e0288279 (2023)
Druh dokumentu: article
ISSN: 1932-6203
DOI: 10.1371/journal.pone.0288279&type=printable
Popis: The objective of this study is to evaluate the performance of functional tests using a camera-based system and machine learning techniques. Specifically, we investigate whether OpenPose and any standard camera can be used to assess the quality of the Single Leg Squat Test and Step Down Test functional tests. We recorded these exercises performed by forty-six healthy subjects, extract motion data, and classify them to expert assessments by three independent physiotherapists using 15 binary parameters. We calculated ranges of movement in Keypoint-pair orientations, joint angles, and relative distances of the monitored segments and used machine learning algorithms to predict the physiotherapists' assessments. Our results show that the AdaBoost classifier achieved a specificity of 0.8, a sensitivity of 0.68, and an accuracy of 0.7. Our findings suggest that a camera-based system combined with machine learning algorithms can be a simple and inexpensive tool to assess the performance quality of functional tests.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje