Popis: |
BackgroundCardiorespiratory coupling (CRC) is a physiological phenomenon that reflects the mutual interaction between the cardiac and respiratory control systems. It is mainly associated with efferent vagal activity from the central autonomic network. Few studies have explored the autonomic changes of CRC in preeclampsia, a critical obstetric complication related to possible autonomic dysfunctions and inflammatory disturbances. This study examined the autonomic mechanisms of CRC in women with severe and moderate preeclampsia and healthy controls by applying nonlinear methods based on information theory, such as mutual information (MI) and Renyi’s mutual information (RMI) and the linear and nonlinear analysis of the Pulse-Respiration Quotient (PRQ).MethodsWe studied three groups of parturient women in the third trimester of pregnancy with a clinical diagnosis of preeclampsia without severe symptoms (P, 38.5 ± 1.4 weeks of pregnancy, n=19), preeclampsia with severe symptoms (SP, 37.5 ± 0.9 weeks of pregnancy, n=22), and normotensive control women (C, 39.1 ± 1.3 weeks of pregnancy, n=20). 10-minutes of abdominal electrocardiograms (ECG) and respiratory signals (RESP) were recorded in all the participants. Subsequently, we obtained the maternal beat-to-beat (RR) and breath-to-breath (BB) time series from ECG and RESP, respectively. The CRC between RR and BB was quantified by nonlinear methods based on information theory, such as MI and RMI, along with the analysis of the novel index of PRQ. Subsequently, we computed the mean PRQ (mPRQ) and the normalized permutation entropy (nPermEn_PRQ) from the PRQ time series generated from BB and RR. In addition, we examined the vagal activity in the three groups by the logarithm of the median of the distribution of the absolute values of successive RR differences (logRSA). ResultsThe MI and RMI values were significantly lower (p |