Anti-tubercular activity and molecular docking studies of indolizine derivatives targeting mycobacterial InhA enzyme

Autor: Katharigatta N. Venugopala, Sandeep Chandrashekharappa, Pran Kishore Deb, Christophe Tratrat, Melendhran Pillay, Deepak Chopra, Nizar A. Al-Shar’i, Wafa Hourani, Lina A. Dahabiyeh, Pobitra Borah, Rahul D. Nagdeve, Susanta K. Nayak, Basavaraj Padmashali, Mohamed A. Morsy, Bandar E. Aldhubiab, Mahesh Attimarad, Anroop B. Nair, Nagaraja Sreeharsha, Michelyne Haroun, Sheena Shashikanth, Viresh Mohanlall, Raghuprasad Mailavaram
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Journal of Enzyme Inhibition and Medicinal Chemistry, Vol 36, Iss 1, Pp 1471-1486 (2021)
Druh dokumentu: article
ISSN: 1475-6366
1475-6374
14756366
DOI: 10.1080/14756366.2021.1919889
Popis: A series of 1,2,3-trisubstituted indolizines (2a–2f, 3a–3d, and 4a–4c) were screened for in vitro whole-cell anti-tubercular activity against the susceptible H37Rv and multidrug-resistant (MDR) Mycobacterium tuberculosis (MTB) strains. Compounds 2b–2d, 3a–3d, and 4a–4c were active against the H37Rv-MTB strain with minimum inhibitory concentration (MIC) ranging from 4 to 32 µg/mL, whereas the indolizines 4a–4c, with ethyl ester group at the 4-position of the benzoyl ring also exhibited anti-MDR-MTB activity (MIC = 16–64 µg/mL). In silico docking study revealed the enoyl-acyl carrier protein reductase (InhA) and anthranilate phosphoribosyltransferase as potential molecular targets for the indolizines. The X-ray diffraction analysis of the compound 4b was also carried out. Further, a safety study (in silico and in vitro) demonstrated no toxicity for these compounds. Thus, the indolizines warrant further development and may represent a novel promising class of InhA inhibitors and multi-targeting agents to combat drug-sensitive and drug-resistant MTB strains.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje