ARGAEL: ARGument Annotation and Evaluation tooL

Autor: Andrés Segura-Tinoco, Iván Cantador
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: SoftwareX, Vol 23, Iss , Pp 101410- (2023)
Druh dokumentu: article
ISSN: 2352-7110
DOI: 10.1016/j.softx.2023.101410
Popis: Argument mining aims to automatically extract structured argumentative information existing in natural language text, and it is commonly performed by machine and deep learning models that require accurately and meaningfully labeled corpora. In this paper, we present ARGAEL, an open-source desktop tool designed to provide flexibility, effectiveness and efficiency on the manual annotation of related arguments in text documents. ARGAEL supports the use of rich, configurable argument models, the labeling of argument components and relations, and the assessment of argument annotations from multiple people, being suitable for large-scale, collaborative argument annotation processes.
Databáze: Directory of Open Access Journals