Extracellular vesicles at the crossroad between cancer progression and immunotherapy: focus on dendritic cells

Autor: Tiziana Schioppa, Carolina Gaudenzi, Giovanni Zucchi, Arianna Piserà, Yasmin Vahidi, Laura Tiberio, Silvano Sozzani, Annalisa Del Prete, Daniela Bosisio, Valentina Salvi
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Journal of Translational Medicine, Vol 22, Iss 1, Pp 1-14 (2024)
Druh dokumentu: article
ISSN: 1479-5876
DOI: 10.1186/s12967-024-05457-4
Popis: Abstract Extracellular vesicles (EVs) are nanosized heat-stable vesicles released by virtually all cells in the body, including tumor cells and tumor-infiltrating dendritic cells (DCs). By carrying molecules from originating cells, EVs work as cell-to-cell communicators in both homeostasis and cancer but may also represent valuable therapeutic and diagnostic tools. This review focuses on the role of tumor-derived EVs (TEVs) in the modulation of DC functions and on the therapeutic potential of both tumor- and DC-derived EVs in the context of immunotherapy and DC-based vaccine design. TEVs were originally characterized for their capability to transfer tumor antigens to DCs but are currently regarded as mainly immunosuppressive because of the expression of DC-inhibiting molecules such as PD-L1, HLA-G, PGE2 and others. However, TEVs may still represent a privileged system to deliver antigenic material to DCs upon appropriate engineering to reduce their immunosuppressive cargo or increase immunogenicity. DC-derived EVs are more promising than tumor-derived EVs since they expose antigen-loaded MHC, costimulatory molecules and NK cell-activating ligands in the absence of an immunosuppressive cargo. Moreover, DC-derived EVs possess several advantages as compared to cell-based drugs such as a higher antigen/MHC concentration and ease of manipulation and a lower sensitivity to immunosuppressive microenvironments. Preclinical models showed that DC-derived EVs efficiently activate tumor-specific NK and T cell responses either directly or indirectly by transferring antigens to tumor-infiltrating DCs. By contrast, however, phase I and II trials showed a limited clinical efficacy of EV-based anticancer vaccines. We discuss that the future of EV-based therapy depends on our capability to overcome major challenges such as a still incomplete understanding of their biology and pharmacokinetic and the lack of standardized methods for high-throughput isolation and purification. Despite this, EVs remain in the limelight as candidates for cancer immunotherapy which may outmatch cell-based strategies in the fullness of their time.
Databáze: Directory of Open Access Journals