Mangrove Phenology and Water Influences Measured with Digital Repeat Photography

Autor: Veeranun Songsom, Werapong Koedsin, Raymond J. Ritchie, Alfredo Huete
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Remote Sensing, Vol 13, Iss 2, p 307 (2021)
Druh dokumentu: article
ISSN: 13020307
2072-4292
DOI: 10.3390/rs13020307
Popis: The intertidal habitat of mangroves is very complex due to the dynamic roles of land and sea drivers. Knowledge of mangrove phenology can help in understanding mangrove growth cycles and their responses to climate and environmental changes. Studies of phenology based on digital repeat photography, or phenocams, have been successful in many terrestrial forests and other ecosystems, however few phenocam studies in mangrove forests showing the influence and interactions of water color and tidal water levels have been performed in sub-tropical and equatorial environments. In this study, we investigated the diurnal and seasonal patterns of an equatorial mangrove forest area at an Andaman Sea site in Phuket province, Southern Thailand, using two phenocams placed at different elevations and with different view orientations, which continuously monitored vegetation and water dynamics from July 2015 to August 2016. The aims of this study were to investigate fine-resolution, in situ mangrove forest phenology and assess the influence and interactions of water color and tidal water levels on the mangrove–water canopy signal. Diurnal and seasonal patterns of red, green, and blue chromatic coordinate (RCC, GCC, and BCC) indices were analyzed over various mangrove forest and water regions of interest (ROI). GCC signals from the water background were found to positively track diurnal water levels, while RCC signals were negatively related with tidal water levels, hence lower water levels yielded higher RCC values, reflecting brownish water colors and increased soil and mud exposure. At seasonal scales, the GCC profiles of the mangrove forest peaked in the dry season and were negatively related with the water level, however the inclusion of the water background signal dampened this relationship. We also detected a strong lunar tidal water periodicity in seasonal GCC values that was not only present in the water background, but was also detected in the mangrove–water canopy and mangrove forest phenology profiles. This suggests significant interactions between mangrove forests and their water backgrounds (color and depth), which may need to be accounted for in upscaling and coupling with satellite-based mangrove monitoring.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje