Alloy Design and Fabrication of Duplex Titanium-Based Alloys by Spark Plasma Sintering for Biomedical Implant Applications
Autor: | Muhammad Farzik Ijaz, Hamad F. Alharbi, Yassir A. Bahri, El-Sayed M. Sherif |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2022 |
Předmět: |
metallic implants
powder metallurgy spark plasma sintering microstructure mechanical properties Technology Electrical engineering. Electronics. Nuclear engineering TK1-9971 Engineering (General). Civil engineering (General) TA1-2040 Microscopy QH201-278.5 Descriptive and experimental mechanics QC120-168.85 |
Zdroj: | Materials, Vol 15, Iss 23, p 8562 (2022) |
Druh dokumentu: | article |
ISSN: | 1996-1944 |
DOI: | 10.3390/ma15238562 |
Popis: | Very often, pure Ti and (α + β) Ti-6Al-4V alloys have been used commercially for implant applications, but ensuring their chemical, mechanical, and biological biocompatibility is always a serious concern for sustaining the long-term efficacy of implants. Therefore, there has always been a great quest to explore new biomedical alloying systems that can offer substantial beneficial effects in tailoring a balance between the mechanical properties and biocompatibility of implantable medical devices. With a view to the mechanical performance, this study focused on designing a Ti-15Zr-2Ta-xSn (where x = 4, 6, 8) alloying system with high strength and low Young’s modulus prepared by a powder metallurgy method. The experimental results showed that mechanical alloying, followed by spark plasma sintering, produced a fully consolidated (α + β) Ti-Zr-Ta-Sn-based alloy with a fine grain size and a relative density greater than 99%. Nevertheless, the shape, size, and distribution of α-phase precipitations were found to be sensitive to Sn contents. The addition of Sn also increased the α/β transus temperature of the alloy. For example, as the Sn content was increased from 4 wt.% to 8 wt.%, the β grains transformed into diverse morphological characteristics, namely, a thin-grain-boundary α phase (αGB), lamellar α colonies, and acicular αs precipitates and very low residual porosity during subsequent cooling after the spark plasma sintering procedure, which is consistent with the relative density results. Among the prepared alloys, Ti-15Zr-2Ta-8Sn exhibited the highest hardness (s340 HV), compressive yield strength (~1056 MPa), and maximum compressive strength (~1470). The formation of intriguing precipitate–matrix interfaces (α/β) acting as dislocation barriers is proposed to be the main reason for the high strength of the Ti-15Zr-2Ta-8Sn alloy. Finally, based on mechanical and structural properties, it is envisaged that our developed alloys will be promising for indwelling implant applications. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |