Leveraging machine learning essentiality predictions and chemogenomic interactions to identify antifungal targets

Autor: Ci Fu, Xiang Zhang, Amanda O. Veri, Kali R. Iyer, Emma Lash, Alice Xue, Huijuan Yan, Nicole M. Revie, Cassandra Wong, Zhen-Yuan Lin, Elizabeth J. Polvi, Sean D. Liston, Benjamin VanderSluis, Jing Hou, Yoko Yashiroda, Anne-Claude Gingras, Charles Boone, Teresa R. O’Meara, Matthew J. O’Meara, Suzanne Noble, Nicole Robbins, Chad L. Myers, Leah E. Cowen
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Nature Communications, Vol 12, Iss 1, Pp 1-18 (2021)
Druh dokumentu: article
ISSN: 2041-1723
DOI: 10.1038/s41467-021-26850-3
Popis: The analysis of essential genes in pathogens can be used to discover potential antimicrobial targets. Here, the authors use a machine learning model and chemogenomic analyses to generate genome-wide gene essentiality predictions for the fungal pathogen Candida albicans, define the function of three uncharacterized essential genes, and identify the target of a new antifungal compound.
Databáze: Directory of Open Access Journals