Popis: |
Demand and market value for pennywort largely depend on the quality of the leaves, which can be affected by various ambient environment or fertigation variables during cultivation. Although early detection of defects in pennywort leaves would enable growers to take quick action, conventional manual detection is laborious and time consuming as well as subjective. Therefore, the objective of this study was to develop an automatic leaf defect detection algorithm for pennywort plants grown under controlled environment conditions, using machine vision and deep learning techniques. Leaf images were captured from pennywort plants grown in an ebb-and-flow hydroponic system under fluorescent light conditions in a controlled plant factory environment. Physically or biologically damaged leaves (e.g., curled, creased, discolored, misshapen, or brown spotted) were classified as defective leaves. Images were annotated using an online tool, and Mask R-CNN models were implemented with the integrated attention mechanisms, convolutional block attention module (CBAM) and coordinate attention (CA) and compared for improved image feature extraction. Transfer learning was employed to train the model with a smaller dataset, effectively reducing processing time. The improved models demonstrated significant advancements in accuracy and precision, with the CA-augmented model achieving the highest metrics, including a mean average precision (mAP) of 0.931 and an accuracy of 0.937. These enhancements enabled more precise localization and classification of leaf defects, outperforming the baseline Mask R-CNN model in complex visual recognition tasks. The final model was robust, effectively distinguishing defective leaves in challenging scenarios, making it highly suitable for applications in precision agriculture. Future research can build on this modeling framework, exploring additional variables to identify specific leaf abnormalities at earlier growth stages, which is crucial for production quality assurance. |