TRPM7-Mediated Ca2+ Regulates Mussel Settlement through the CaMKKβ-AMPK-SGF1 Pathway

Autor: Jian He, Peng Wang, Zhixuan Wang, Danqing Feng, Dun Zhang
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: International Journal of Molecular Sciences, Vol 24, Iss 6, p 5399 (2023)
Druh dokumentu: article
ISSN: 1422-0067
1661-6596
DOI: 10.3390/ijms24065399
Popis: Many marine invertebrates have planktonic larval and benthic juvenile/adult stages. When the planktonic larvae are fully developed, they must find a favorable site to settle and metamorphose into benthic juveniles. This transition from a planktonic to a benthic mode of life is a complex behavioral process involving substrate searching and exploration. Although the mechanosensitive receptor in the tactile sensor has been implicated in sensing and responding to surfaces of the substrates, few have been unambiguously identified. Recently, we identified that the mechanosensitive transient receptor potential melastatin-subfamily member 7 (TRPM7) channel, highly expressed in the larval foot of the mussel Mytilospsis sallei, was involved in substrate exploration for settlement. Here, we show that the TRPM7-mediated Ca2+ signal was involved in triggering the larval settlement of M. sallei through the calmodulin-dependent protein kinase kinase β/AMP-activated protein kinase/silk gland factor 1 (CaMKKβ-AMPK-SGF1) pathway. It was found that M. sallei larvae preferred the stiff surfaces for settlement, on which TRPM7, CaMKKβ, AMPK, and SGF1 were highly expressed. These findings will help us to better understand the molecular mechanisms of larval settlement in marine invertebrates, and will provide insights into the potential targets for developing environmentally friendly antifouling coatings for fouling organisms.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje