Edaravone Dexborneol mitigates pathology in animal and cell culture models of Alzheimer’s disease by inhibiting neuroinflammation and neuronal necroptosis

Autor: Chong Xu, Yilan Mei, Ruihan Yang, Qiudan Luo, Jienian Zhang, Xiaolin Kou, Jianfeng Hu, Yujie Wang, Yue Li, Rong Chen, Zhengping Zhang, Yuyuan Yao, Jian Sima
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Cell & Bioscience, Vol 14, Iss 1, Pp 1-18 (2024)
Druh dokumentu: article
ISSN: 2045-3701
DOI: 10.1186/s13578-024-01230-8
Popis: Abstract Background Alzheimer’s disease (AD) is the most prevalent neurodegenerative disease with limited disease-modifying treatments. Drug repositioning strategy has now emerged as a promising approach for anti-AD drug discovery. Using 5×FAD mice and Aβ-treated neurons in culture, we tested the efficacy of Y-2, a compounded drug containing the antioxidant Edaravone (Eda), a pyrazolone and (+)-Borneol, an anti-inflammatory diterpenoid from cinnamon, approved for use in amyotrophic lateral sclerosis patients. Results We examined effects of Y-2 versus Eda alone by i.p. administered in 8-week-old 5×FAD mice (females) for 4 months by comparing cognitive function, Aβ pathologies, neuronal necroptosis and neuroinflammation. Using primary neurons and astrocytes, as well as neuronal and astrocytic cell lines, we elucidated the molecular mechanisms of Y-2 by examining neuronal injury, astrocyte-mediated inflammation and necroptosis. Here, we find that Y-2 improves cognitive function in AD mice. Histopathological data show that Y-2, better than Eda alone, markedly ameliorates Aβ pathologies including Aβ burden, astrogliosis/microgliosis, and Tau phosphorylation. In addition, Y-2 reduces Aβ-induced neuronal injury including neurite damage, mitochondrial impairment, reactive oxygen species production and NAD+ depletion. Notably, Y-2 inhibits astrocyte-mediated neuroinflammation and attenuates TNF-α-triggered neuronal necroptosis in cell cultures and AD mice. RNA-seq further demonstrates that Y-2, compared to Eda, indeed upregulates anti-inflammation pathways in astrocytes. Conclusions Our findings infer that Y-2, better than Eda alone, mitigates AD pathology and may provide a potential drug candidate for AD treatment.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje