Autor: |
Sosuke Munetomo, Jumpei Uchiyama, Iyo Takemura-Uchiyama, Thamonwan Wanganuttara, Yumiko Yamamoto, Toshihiro Tsukui, Hideharu Hagiya, Shuji Kanamaru, Hideyuki Kanda, Osamu Matsushita |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
PLoS ONE, Vol 19, Iss 10, p e0310962 (2024) |
Druh dokumentu: |
article |
ISSN: |
1932-6203 |
DOI: |
10.1371/journal.pone.0310962 |
Popis: |
Methicillin-resistant Staphylococcus spp. present challenges in clinical and veterinary settings because effective antimicrobial agents are limited. Phage-encoded peptidoglycan-degrading enzyme, endolysin, is expected to be a novel antimicrobial agent. The enzymatic activity has recently been shown to be influenced by the linker between functional domains in the enzyme. S6_ORF93 (ORF93) is one of the endolysins derived from previously isolated Staphylococcus giant phage S6. The ORF93 was speculated to have a catalytic and peptidoglycan-binding domain with a long linker. In this study, we examined the influence of linker shortening on the characteristics of ORF93. We produce wild-type ORF93 and the linker deletion mutants using an Escherichia coli expression system. These mutants were designated as ORF93-Δ05, ORF93-Δ10, ORF93-Δ15, and ORF93-Δ20, from which 5, 10, 15, and 20 amino acids were removed from the linker, respectively. Except for the ORF93-Δ20, ORF93 and its mutants were expressed as soluble proteins. Moreover, ORF93-Δ15 showed the highest yield and bacteriolytic activity, while the antimicrobial spectrum was homologous. The cold storage experiment showed a slight effect by the linker deletion. According to our results and other studies, linker investigations are crucial in endolysin development. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|