Popis: |
Background: Recurrence remains the primary cause of death in patients with breast cancer. Although machine learning can efficiently predict the prognosis of breast cancer patients, the black-box nature of the model may result in a lack of evidence for clinicians when making critical decisions. Methods: In this study, our main objective was twofold: (1) to develop a clinical decision support tool for predicting the prognosis of breast cancer and (2) to identify and explore the key factors that influence breast cancer recurrence. To achieve this, we employed an explainable ensemble learning method called Shapley additive explanation (SHAP), which leverages cooperative game theory. Using real-world data from 1629 breast cancer patients, we analyzed and uncovered the key factors associated with breast cancer recurrence. Subsequently, we used these identified factors to create a recurrence prediction model and establish a decision mechanism for the tool. The proposed method not only provides accurate recurrence predictions but also offers transparent explanations for these predictions. Results: By utilizing four key factors, namely, tumor size, clinical stage III, number of lymph node metastases, and age, our decision support tool for predicting breast cancer recurrence achieved significant improvements. The extra-tree model exhibited an increased area under the receiver operating characteristic curve (AUC) of 0.97, while the Random Forest model demonstrated an improved AUC of 0.96. We also offer a decision mechanism for a recurrence prediction model based on the identified key factors. This transparent and interpretable decision-making process facilitated by our explainable ensemble learning model enhances trust and promotes its applicability in clinical settings. Conclusions: The proposed explainable ensemble learning method shows promising results in predicting breast cancer recurrence, outperforming existing methods with high accuracy and transparency. This advancement has the potential to significantly improve clinical decision-making and patient outcomes in breast cancer treatment. |