Autor: |
Yi Yang, Zhiyuan Bo, Jingxian Wang, Bo Chen, Qing Su, Yiran Lian, Yimo Guo, Jinhuan Yang, Chongming Zheng, Juejin Wang, Hao Zeng, Junxi Zhou, Yaqing Chen, Gang Chen, Yi Wang |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
BMC Cancer, Vol 24, Iss 1, Pp 1-12 (2024) |
Druh dokumentu: |
article |
ISSN: |
1471-2407 |
DOI: |
10.1186/s12885-024-13161-1 |
Popis: |
Abstract Background Alcohol drinking and gut microbiota are related to hepatocellular carcinoma (HCC), but the specific relationship between them remains unclear. Aims We aimed to establish the alcohol drinking-gut microbiota-liver axis and develop machine learning (ML) models in predicting the occurrence of early-stage HCC. Methods Two hundred sixty-nine patients with early-stage HCC and 278 controls were recruited. Alcohol drinking-gut microbiota-liver axis was established through the mediation/moderation effect analyses. Eight ML algorithms including Classification and Regression Tree (CART), Gradient Boosting Machine (GBM), K-Nearest Neighbor (KNN), Logistic Regression (LR), Neural Network (NN), Random Forest (RF), Support Vector Machine (SVM), and eXtreme Gradient Boosting (XGBoost) were applied. Results A total of 160 pairs of individuals were included for analyses. The mediation effects of Genus_Catenibacterium (P = 0.024), Genus_Tyzzerella_4 (P |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|