Particulate matter from car exhaust alters function of human iPSC-derived microglia

Autor: Henna Jäntti, Steffi Jonk, Mireia Gómez Budia, Sohvi Ohtonen, Ilkka Fagerlund, Mohammad Feroze Fazaludeen, Päivi Aakko-Saksa, Alice Pebay, Šárka Lehtonen, Jari Koistinaho, Katja M. Kanninen, Pasi I. Jalava, Tarja Malm, Paula Korhonen
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Particle and Fibre Toxicology, Vol 21, Iss 1, Pp 1-21 (2024)
Druh dokumentu: article
ISSN: 1743-8977
DOI: 10.1186/s12989-024-00564-y
Popis: Abstract Background Air pollution is recognized as an emerging environmental risk factor for neurological diseases. Large-scale epidemiological studies associate traffic-related particulate matter (PM) with impaired cognitive functions and increased incidence of neurodegenerative diseases such as Alzheimer’s disease. Inhaled components of PM may directly invade the brain via the olfactory route, or act through peripheral system responses resulting in inflammation and oxidative stress in the brain. Microglia are the immune cells of the brain implicated in the progression of neurodegenerative diseases. However, it remains unknown how PM affects live human microglia. Results Here we show that two different PMs derived from exhausts of cars running on EN590 diesel or compressed natural gas (CNG) alter the function of human microglia-like cells in vitro. We exposed human induced pluripotent stem cell (iPSC)-derived microglia-like cells (iMGLs) to traffic related PMs and explored their functional responses. Lower concentrations of PMs ranging between 10 and 100 µg ml−1 increased microglial survival whereas higher concentrations became toxic over time. Both tested pollutants impaired microglial phagocytosis and increased secretion of a few proinflammatory cytokines with distinct patterns, compared to lipopolysaccharide induced responses. iMGLs showed pollutant dependent responses to production of reactive oxygen species (ROS) with CNG inducing and EN590 reducing ROS production. Conclusions Our study indicates that traffic-related air pollutants alter the function of human microglia and warrant further studies to determine whether these changes contribute to adverse effects in the brain and on cognition over time. This study demonstrates human iPSC-microglia as a valuable tool to study functional microglial responses to environmental agents.
Databáze: Directory of Open Access Journals