Cataract-1K Dataset for Deep-Learning-Assisted Analysis of Cataract Surgery Videos

Autor: Negin Ghamsarian, Yosuf El-Shabrawi, Sahar Nasirihaghighi, Doris Putzgruber-Adamitsch, Martin Zinkernagel, Sebastian Wolf, Klaus Schoeffmann, Raphael Sznitman
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Scientific Data, Vol 11, Iss 1, Pp 1-12 (2024)
Druh dokumentu: article
ISSN: 2052-4463
DOI: 10.1038/s41597-024-03193-4
Popis: Abstract In recent years, the landscape of computer-assisted interventions and post-operative surgical video analysis has been dramatically reshaped by deep-learning techniques, resulting in significant advancements in surgeons’ skills, operation room management, and overall surgical outcomes. However, the progression of deep-learning-powered surgical technologies is profoundly reliant on large-scale datasets and annotations. In particular, surgical scene understanding and phase recognition stand as pivotal pillars within the realm of computer-assisted surgery and post-operative assessment of cataract surgery videos. In this context, we present the largest cataract surgery video dataset that addresses diverse requisites for constructing computerized surgical workflow analysis and detecting post-operative irregularities in cataract surgery. We validate the quality of annotations by benchmarking the performance of several state-of-the-art neural network architectures for phase recognition and surgical scene segmentation. Besides, we initiate the research on domain adaptation for instrument segmentation in cataract surgery by evaluating cross-domain instrument segmentation performance in cataract surgery videos. The dataset and annotations are publicly available in Synapse.
Databáze: Directory of Open Access Journals