Autor: |
Fayaz Hassan, Jianguo Yu, Zafi Sherhan Syed, Nadeem Ahmed, Mana Saleh Al Reshan, Asadullah Shaikh |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
PeerJ Computer Science, Vol 9, p e1440 (2023) |
Druh dokumentu: |
article |
ISSN: |
2376-5992 |
DOI: |
10.7717/peerj-cs.1440 |
Popis: |
Vehicular ad hoc networks (VANETs) are intelligent transport subsystems; vehicles can communicate through a wireless medium in this system. There are many applications of VANETs such as traffic safety and preventing the accident of vehicles. Many attacks affect VANETs communication such as denial of service (DoS) and distributed denial of service (DDoS). In the past few years the number of DoS (denial of service) attacks are increasing, so network security and protection of the communication systems are challenging topics; intrusion detection systems need to be improved to identify these attacks effectively and efficiently. Many researchers are currently interested in enhancing the security of VANETs. Based on intrusion detection systems (IDS), machine learning (ML) techniques were employed to develop high-security capabilities. A massive dataset containing application layer network traffic is deployed for this purpose. Interpretability technique Local interpretable model-agnostic explanations (LIME) technique for better interpretation model functionality and accuracy. Experimental results demonstrate that utilizing a random forest (RF) classifier achieves 100% accuracy, demonstrating its capability to identify intrusion-based threats in a VANET setting. In addition, LIME is applied to the RF machine learning model to explain and interpret the classification, and the performance of machine learning models is evaluated in terms of accuracy, recall, and F1 score. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|