Hyers–Ulam Stability of Order k for Euler Equation and Euler–Poisson Equation in the Calculus of Variations

Autor: Daniela Marian, Sorina Anamaria Ciplea, Nicolaie Lungu
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Mathematics, Vol 10, Iss 15, p 2556 (2022)
Druh dokumentu: article
ISSN: 2227-7390
DOI: 10.3390/math10152556
Popis: In this paper, we define and study Hyers–Ulam stability of order 1 for Euler’s equation and Hyers–Ulam stability of order m−1 for the Euler–Poisson equation in the calculus of variations in two special cases, when these equations have the form y″(x)=f(x) and y(m)(x)=f(x), respectively. We prove some estimations for Jyx−Jy0x, where y is an approximate solution and y0 is an exact solution of the corresponding Euler and Euler-Poisson equations, respectively. We also give two examples.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje