Popis: |
To explore whether or not the gossypol varied in cottonseed by-products affect rumen degradability and fermentation efficiency, an in vitro cumulative gas production experiment was applied with mixed rumen microorganism to compare rumen fermentation characteristics of whole cottonseed (WCS, n = 3 samples), cottonseed meal (CSM, n = 3 samples), and cottonseed hull (CSH, n = 2 samples). The five-replicate fermentation per sample per incubation time continuously lasted for 0.5, 1.5, 3, 6, 12, 24, 36, and 48 h with an automated gas production recording system. Regardless of distinct nutrient differences, the free gossypol level in these cottonseed by-products ranked: WCS > CSH > CSM. After 48 h of incubation, the in vitro dry matter degradability and ammonia N concentration ranked as: CSM > WCS > CSH. The cumulative gas production and total volatile fatty acid (VFA) levels in the culture fluids ranked: CSM > CSH > WCS, in which the average production rate ranked: CSM > WCS > CSH. Regarding the molar VFA pattern, WCS in comparison with CSH and CSM presented the lowest production of non-glucogenic acids (e.g., acetate) and exhibited the highest fermentation efficiency of energy from carbohydrates to VFAs. There was a significant negative correlation between the gossypol content and cumulative gas and total VFA production, suggesting that the greater gossypol in cottonseed by-products, the more detrimental effect occurred for rumen fermentation. In a brief, WCS exhibited mediocre rumen degradability and less microbial fermentation efficiency than CSH and CSM, depending on their gossypol levels. |