Autor: |
El Sayed A. E. Ali, Mariam A. Amer, AbdelGawad Saad, Hend T. Eid |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Bulletin of the National Research Centre, Vol 47, Iss 1, Pp 1-10 (2023) |
Druh dokumentu: |
article |
ISSN: |
2522-8307 |
DOI: |
10.1186/s42269-023-01073-2 |
Popis: |
Abstract Background Since the ecosystem is the first link in the food chain for all living things, including humans, animals, and plants, restoring it has become a global priority in recent years, particularly in agricultural soils by expanding the trend of fertilization and biological control instead of relying more on the use of chemical pesticides. Therefore, this study aims to maximize and enhance the advantages of mushroom residues (MR) to make vermicompost that can resist Fusarium Oxysporium (FO) in maize. This study was conducted in three stages: compost preparation, composting, and planting. Results The mixing process of vermicompost with the soil was improved by the lowest CV. The highest productivity was achieved by using a plastic rotary drum composter which had a patching size of 60 kg at a speed of 15 rpm for 8 min. In addition, the production of vermicompost from (MR) was improved by adding the aqueous extraction of licorice residue (LR), where helped to increase the vermicompost's pH and the amount of dissolved Cu and Zn. The wilt illness disease caused by FO in maize crop was decreased by adding the mixture of vermicompost (MR and LR) to the soil infested with Fusarium, as compared to the control. Conclusions The combination of 25% vermicompost (MR + LR) and 75% agri-soil proved to be the most effective treatment for wilt disease control, with a disease severity score of 1.90. It was discovered that treated maize roots produced more peroxidase and polyphenol oxidase activity compared to the control. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|