Automated Cluster Detection of Health Care–Associated Infection Based on the Multisource Surveillance of Process Data in the Area Network: Retrospective Study of Algorithm Development and Validation

Autor: Fan, Yunzhou, Wu, Yanyan, Cao, Xiongjing, Zou, Junning, Zhu, Ming, Dai, Di, Lu, Lin, Yin, Xiaoxv, Xiong, Lijuan
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: JMIR Medical Informatics, Vol 8, Iss 10, p e16901 (2020)
Druh dokumentu: article
ISSN: 2291-9694
DOI: 10.2196/16901
Popis: BackgroundThe cluster detection of health care–associated infections (HAIs) is crucial for identifying HAI outbreaks in the early stages. ObjectiveWe aimed to verify whether multisource surveillance based on the process data in an area network can be effective in detecting HAI clusters. MethodsWe retrospectively analyzed the incidence of HAIs and 3 indicators of process data relative to infection, namely, antibiotic utilization rate in combination, inspection rate of bacterial specimens, and positive rate of bacterial specimens, from 4 independent high-risk units in a tertiary hospital in China. We utilized the Shewhart warning model to detect the peaks of the time-series data. Subsequently, we designed 5 surveillance strategies based on the process data for the HAI cluster detection: (1) antibiotic utilization rate in combination only, (2) inspection rate of bacterial specimens only, (3) positive rate of bacterial specimens only, (4) antibiotic utilization rate in combination + inspection rate of bacterial specimens + positive rate of bacterial specimens in parallel, and (5) antibiotic utilization rate in combination + inspection rate of bacterial specimens + positive rate of bacterial specimens in series. We used the receiver operating characteristic (ROC) curve and Youden index to evaluate the warning performance of these surveillance strategies for the detection of HAI clusters. ResultsThe ROC curves of the 5 surveillance strategies were located above the standard line, and the area under the curve of the ROC was larger in the parallel strategy than in the series strategy and the single-indicator strategies. The optimal Youden indexes were 0.48 (95% CI 0.29-0.67) at a threshold of 1.5 in the antibiotic utilization rate in combination–only strategy, 0.49 (95% CI 0.45-0.53) at a threshold of 0.5 in the inspection rate of bacterial specimens–only strategy, 0.50 (95% CI 0.28-0.71) at a threshold of 1.1 in the positive rate of bacterial specimens–only strategy, 0.63 (95% CI 0.49-0.77) at a threshold of 2.6 in the parallel strategy, and 0.32 (95% CI 0.00-0.65) at a threshold of 0.0 in the series strategy. The warning performance of the parallel strategy was greater than that of the single-indicator strategies when the threshold exceeded 1.5. ConclusionsThe multisource surveillance of process data in the area network is an effective method for the early detection of HAI clusters. The combination of multisource data and the threshold of the warning model are 2 important factors that influence the performance of the model.
Databáze: Directory of Open Access Journals