Growth profiling, kinetics and substrate utilization of low-cost dairy waste for production of β-cryptoxanthin by Kocuria marina DAGII

Autor: Ruchira Mitra, Debjani Dutta
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: Royal Society Open Science, Vol 5, Iss 7 (2018)
Druh dokumentu: article
ISSN: 2054-5703
DOI: 10.1098/rsos.172318
Popis: The dairy industry produces enormous amount of cheese whey containing the major milk nutrients, but this remains unutilized all over the globe. The present study investigates the production of β-cryptoxanthin (β-CRX) by Kocuria marina DAGII using cheese whey as substrate. Response surface methodology (RSM) and an artificial neural network (ANN) approach were implemented to obtain the maximum β-CRX yield. Significant factors, i.e. yeast extract, peptone, cheese whey and initial pH, were the input variables in both the optimizing studies, and β-CRX yield and biomass were taken as output variables. The ANN topology of 4-9-2 was found to be optimum when trained with a feed-forward back-propagation algorithm. Experimental values of β-CRX yield (17.14 mg l−1) and biomass (5.35 g l−1) were compared and ANN predicted values (16.99 mg l−1 and 5.33 g l−1, respectively) were found to be more accurate compared with RSM predicted values (16.95 mg l−1 and 5.23 g l−1, respectively). Detailed kinetic analysis of cellular growth, substrate consumption and product formation revealed that growth inhibition took place at substrate concentrations higher than 12% (v/v) of cheese whey. The Han and Levenspiel model was the best fitted substrate inhibition model that described the cell growth in cheese whey with an R2 and MSE of 0.9982% and 0.00477%, respectively. The potential importance of this study lies in the development, optimization and modelling of a suitable cheese whey supplemented medium for increased β-CRX production.
Databáze: Directory of Open Access Journals