Autor: |
Amy M. McKenna, Martha L. Chacón-Patiño, Holly K. Roth, William Bahureksa, Robert B. Young, James A. Ippolito, Yan Xin, Thomas Borch, Antony J. Williams, Huan Chen |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Soil & Environmental Health, Vol 2, Iss 4, Pp 100114- (2024) |
Druh dokumentu: |
article |
ISSN: |
2949-9194 |
DOI: |
10.1016/j.seh.2024.100114 |
Popis: |
Biochar, formed through the pyrolysis or burning of organic wastes, has a complex chemical composition influenced by feedstock, pyrolysis temperature, and reaction conditions. Water-soluble, dissolved black carbon species released from biochar comprise one of the most photoreactive organic matter fractions. Photodegradation of these water-soluble species from wheat straw biochar, produced at different pyrolysis temperatures in laboratory microcosms, resulted in noticeable compositional differences. This study characterized water-soluble transformation products formed through the photodegradation of wheat straw biochar pyrolyzed at 300, 400, 500, or 600°C by electrospray ionization 21 T Fourier transform ion cyclotron resonance mass spectrometry (21T FT-ICR MS). We also evaluated global trends in the toxicity of these water-soluble fractions using MicroTox™ to assess the impacts of pyrolysis temperature. Additionally, we examined biochar surface morphology after photodegradation and observed minimal change after irradiation for 48 h, though the total yield of water-soluble biochar species varied with pyrolysis temperature. Trends in toxicity observed from MicroTox® analysis reveal that water-soluble photoproducts from biochar produced at 300°C and 900°C are nearly three times as toxic compared to dark controls. The ultrahigh resolving power of 21T FT-ICR MS allows for the separation of tens of thousands of highly oxidized, low-molecular-weight ( |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|