Autor: |
Mateusz Pirga, Andrzej Włoch, Iwona Włoch |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Symmetry, Vol 16, Iss 11, p 1493 (2024) |
Druh dokumentu: |
article |
ISSN: |
2073-8994 |
DOI: |
10.3390/sym16111493 |
Popis: |
Padovan numbers and Perrin numbers belong to the family of numbers of the Fibonacci type and they are well described in the literature. In this paper, by studying independent (1,2)-dominating sets in paths and cycles, we obtain new binomial formulas for Padovan and Perrin numbers. As a consequence of graph interpretation, we propose a new dependence between Padovan and Perrin numbers. By studying special independent (1,2)-dominating sets in a composition of two graphs, we define Padovan polynomials of graphs. By the fact that every independent (1,2)-dominating set includes the set of leaves as a subset, in some cases a symmetric structure of the independent (1,2)-dominating set can be used. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|