Some New Graph Interpretations of Padovan Numbers

Autor: Mateusz Pirga, Andrzej Włoch, Iwona Włoch
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Symmetry, Vol 16, Iss 11, p 1493 (2024)
Druh dokumentu: article
ISSN: 2073-8994
DOI: 10.3390/sym16111493
Popis: Padovan numbers and Perrin numbers belong to the family of numbers of the Fibonacci type and they are well described in the literature. In this paper, by studying independent (1,2)-dominating sets in paths and cycles, we obtain new binomial formulas for Padovan and Perrin numbers. As a consequence of graph interpretation, we propose a new dependence between Padovan and Perrin numbers. By studying special independent (1,2)-dominating sets in a composition of two graphs, we define Padovan polynomials of graphs. By the fact that every independent (1,2)-dominating set includes the set of leaves as a subset, in some cases a symmetric structure of the independent (1,2)-dominating set can be used.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje