Autor: |
Lu Yang, Rong Yin, Yuanbo Xue, Yongliang Tian, Hu Liu |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Applied Sciences, Vol 13, Iss 4, p 2169 (2023) |
Druh dokumentu: |
article |
ISSN: |
2076-3417 |
DOI: |
10.3390/app13042169 |
Popis: |
Medium/distant maritime rescue is significantly important in the development of maritime business. For typical medium/distant maritime rescue, the range limitation of helicopters and many difficulties between helicopter and ship cooperation lead to unsatisfactory rescue results. Compared to helicopters and ships, amphibious aircrafts could effectively solve the problems faced by helicopters and ships and meet the medium/distant maritime rescue demands with their long cruise range, high speed, high rescue capability and surface landing capability. Therefore, a time-domain planning method (TPM) based on the k-means* clustering algorithm and the genetic algorithm* is proposed in this study for the surface rescue process (SRP) of amphibious aircrafts in medium/distant maritime rescue. To simulate the SRP of amphibious aircrafts, an agent-based simulation environment of medium/distant maritime rescue was constructed based on the Python platform. Finally, a case study was carried out to verify its effectiveness and applicability. The results show that the TPM exhibits satisfactory rescue results for the SRP of the amphibious aircraft and that less than 1 h of delay time is recommended for the amphibious aircraft to rescue the persons in distress by using TPM. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|