Autor: |
Deema Albadan, Mojdeh Delshad, Bruno Ramon Batista Fernandes, Esmail Eltahan, Kamy Sepehrnoori |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Applied Sciences, Vol 14, Iss 16, p 7087 (2024) |
Druh dokumentu: |
article |
ISSN: |
2076-3417 |
DOI: |
10.3390/app14167087 |
Popis: |
The efficient use of depleted gas reservoirs for hydrogen storage is a promising solution for transitioning to carbon-neutral energy sources. This study proposes an analytical framework for estimating hydrogen storage capacity using a comprehensive material balance approach in depleted gas reservoirs. The methodology integrates basic reservoir engineering principles with thermodynamic considerations to accurately estimate hydrogen storage capacity in both volumetric drive and water drive gas reservoirs through an iterative approach based on mass conservation and the real gas law. This framework is implemented in a Python program, using the CoolProp library for phase behavior modeling with the Soave–Redlich–Kwong (SRK) equation of state. The methodology is validated with numerical simulations of a tank model representing the two reservoir drive mechanisms discussed. Also, a case study of a synthetic complex reservoir demonstrates the applicability of the proposed approach to real-world scenarios. The findings suggest that precise modeling of fluid behavior is crucial for reliable capacity estimations. The proposed analytical framework achieves an impressive accuracy, with deviations of less than 1% compared to estimates obtained through numerical simulations. Insights derived from this study can significantly contribute to the assessment of strategic decisions for utilizing depleted gas reservoirs for hydrogen storage. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|