Autor: |
Andreas Dechant, Shin-ichi Sasa, Sosuke Ito |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Physical Review Research, Vol 4, Iss 1, p L012034 (2022) |
Druh dokumentu: |
article |
ISSN: |
2643-1564 |
DOI: |
10.1103/PhysRevResearch.4.L012034 |
Popis: |
Two qualitatively different ways of driving a physical system out of equilibrium, i.e., time-dependent and nonconservative forcing, are reflected by the decomposition of the system's entropy production into excess and housekeeping parts. We show that the difference between these two types of driving gives rise to a geometric formulation in terms of two orthogonal contributions to the currents in the system. This geometric picture in a natural way leads to variational expressions for both the excess and housekeeping entropy, which allow calculating both contributions independently from the trajectory data of the system. We demonstrate this by calculating the excess and housekeeping entropy of a particle in a time-dependent, tilted periodic potential. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|