ON HAMILTONIAN FORMULATIONS AND CONSERVATION LAWS FOR PLATE THEORIES OF VEKUA-AMOSOV TYPE
Autor: | Sergey I. Zhavoronok |
---|---|
Jazyk: | English<br />Russian |
Rok vydání: | 2017 |
Předmět: | |
Zdroj: | International Journal for Computational Civil and Structural Engineering, Vol 13, Iss 4 (2017) |
Druh dokumentu: | article |
ISSN: | 2587-9618 2588-0195 |
DOI: | 10.22337/2587-9618-2017-13-4-82-95 |
Popis: | Some variants of the generalized Hamiltonian formulation of the plate theory of I. N. Vekua – A. A. Amosov type are presented. The infinite dimensional formulation with one evolution variable, or an “instantaneous” formalism, as well as the de Donder – Weyl one are considered, and their application to the numerical simulation of shell and plate dynamics is briefly discussed. The main conservation laws are formulated for the general plate theory of Nth order, and the possible motion integrals are introduced |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |