Eliminating bias: enhancing children’s book recommendation using a hybrid model of graph convolutional networks and neural matrix factorization

Autor: Lijuan Shen, Liping Jiang
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: PeerJ Computer Science, Vol 10, p e1858 (2024)
Druh dokumentu: article
ISSN: 2376-5992
DOI: 10.7717/peerj-cs.1858
Popis: Managing user bias in large-scale user review data is a significant challenge in optimizing children’s book recommendation systems. To tackle this issue, this study introduces a novel hybrid model that combines graph convolutional networks (GCN) based on bipartite graphs and neural matrix factorization (NMF). This model aims to enhance the precision and efficiency of children’s book recommendations by accurately capturing user biases. In this model, the complex interactions between users and books are modeled as a bipartite graph, with the users’ book ratings serving as the weights of the edges. Through GCN and NMF, we can delve into the structure of the graph and the behavioral patterns of users, more accurately identify and address user biases, and predict their future behaviors. Compared to traditional recommendation systems, our hybrid model excels in handling large-scale user review data. Experimental results confirm that our model has significantly improved in terms of recommendation accuracy and scalability, positively contributing to the advancement of children’s book recommendation systems.
Databáze: Directory of Open Access Journals