Autor: |
Xifen Huang, Jinfeng Xu, Hao Guo, Jianhua Shi, Wenjie Zhao |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Mathematics, Vol 10, Iss 19, p 3702 (2022) |
Druh dokumentu: |
article |
ISSN: |
2227-7390 |
DOI: |
10.3390/math10193702 |
Popis: |
For analyzing multiple events data, the illness death model is often used to investigate the covariate–response association for its easy and direct interpretation as well as the flexibility to accommodate the within-subject dependence. The resulting estimation and inferential procedures often depend on the subjective specification of the parametric frailty distribution. For certain frailty distributions, the computation can be challenging as the estimation involves both the nonparametric component and the parametric component. In this paper, we develop efficient computational methods for analyzing semi-competing risks data in the illness death model with the general frailty, where the Minorization–Maximization (MM) principle is employed for yielding accurate estimation and inferential procedures. Simulation studies are conducted to assess the finite-sample performance of the proposed method. An application to a real data is also provided for illustration. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|