Autor: |
Chen Yang, Chun-Lei Tang |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Communications in Analysis and Mechanics, Vol 15, Iss 4, Pp 638-657 (2023) |
Druh dokumentu: |
article |
ISSN: |
2836-3310 |
DOI: |
10.3934/cam.2023032?viewType=HTML |
Popis: |
In this paper, we consider the following Schrödinger-Poisson system $ \begin{equation*} \qquad \left\{ \begin{array}{ll} -\Delta u+V(x)u+\phi u = |u|^{p-2}u+ \lambda K(x)|u|^{q-2}u\ \ \ &\ \rm in\; \mathbb{R}^{3}, \\ -\Delta \phi = u^2 \ \ \ &\ \rm in\; \mathbb{R}^{3}.\ \end{array} \right. \end{equation*} $ Under the weakly coercive assumption on $ V $ and an appropriate condition on $ K $, we investigate the cases when the nonlinearities are of concave-convex type, that is, $ 1 < q < 2 $ and $ 4 < p < 6 $. By constructing a nonempty closed subset of the sign-changing Nehari manifold, we establish the existence of least energy sign-changing solutions provided that $ \lambda\in(-\infty, \lambda_*) $, where $ \lambda_* > 0 $ is a constant. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|