Popis: |
The development of peptide-based pharmaceutics is a hot topic in the pharmaceutical industry and in basic research. However, from the research and development perspective there is an unmet need for new, alternative, solid-phase peptide synthesizers that are highly efficient, automated, robust, able to synthetize peptides in parallel, inexpensive (to obtain and operate), have potential to be scaled up, and even comply with the principles of green chemistry. Moreover, a peptide synthesizer of this type could also fill the gap in university research, and therefore speed the advancement of peptide-based pharmaceutical options. This paper presents a Tecan add-on peptide synthesizer (TaPSy), which has operational flexibility (coupling time: 15–30 min), can handle all manual synthesis methods, and is economical (solvent use: 34.5 mL/cycle, while handling 0.49 mmol scale/reactor, even with ≤3 equivalents of activated amino acid derivatives). Moreover, it can carry out parallel synthesis of up to 12 different peptides (0.49 mmol scale in each). TaPSy uses no heating or high pressure, while it is still resistant to external influences (operating conditions: atmospheric pressure, room temperature 20–40 ˚C, including high [>70%] relative humidity). The system's solvent can also be switched from DMF to a green and biorenewable solvent, γ-valerolactone (GVL), without further adjustment. The designed TaPSy system can produce peptides with high purity (>70%), even with the green GVL solvent alternative. In this paper we demonstrate the optimization path of a newly developed peptide synthesizer in the context of coupling reagents, reaction time and reagent equivalents applying for a synthesis of a model peptide. We compare the results by analytical characteristics (purity of raw material, crude yield, yield) and calculated overall cost of the syntheses of one mg of crude peptide using a specified set of reaction conditions. |