Focus expansion and stability of the spread parameter estimate of the power law model for dispersal gradients

Autor: Peter S. Ojiambo, David H. Gent, Lucky K. Mehra, David Christie, Roger Magarey
Jazyk: angličtina
Rok vydání: 2017
Předmět:
Zdroj: PeerJ, Vol 5, p e3465 (2017)
Druh dokumentu: article
ISSN: 2167-8359
DOI: 10.7717/peerj.3465
Popis: Empirical and mechanistic modeling indicate that pathogens transmitted via aerially dispersed inoculum follow a power law, resulting in dispersive epidemic waves. The spread parameter (b) of the power law model, which is an indicator of the distance of the epidemic wave front from an initial focus per unit time, has been found to be approximately 2 for several animal and plant diseases over a wide range of spatial scales under conditions favorable for disease spread. Although disease spread and epidemic expansion can be influenced by several factors, the stability of the parameter b over multiple epidemic years has not been determined. Additionally, the size of the initial epidemic area is expected to be strongly related to the final epidemic extent for epidemics, but the stability of this relationship is also not well established. Here, empirical data of cucurbit downy mildew epidemics collected from 2008 to 2014 were analyzed using a spatio-temporal model of disease spread that incorporates logistic growth in time with a power law function for dispersal. Final epidemic extent ranged from 4.16 ×108 km2 in 2012 to 6.44 ×108 km2 in 2009. Current epidemic extent became significantly associated (P
Databáze: Directory of Open Access Journals